您选择的条件: Hendrik Linz
  • On the underestimation of dust mass in protoplanetary disks: Effects of disk structure and dust properties

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The total amount of dust grains in protoplanetary disks is one of the key properties that characterize the potential for planet formation. With (sub-)millimeter flux measurements, literature studies usually derive the dust mass using an analytic form under the assumption of optically thin emission, which may lead to substantial underestimation. In this work, we conduct a parameter study with the goal of investigating the effects of disk structure and dust properties on the underestimation through self-consistent radiative transfer models. Different dust models, scattering modes and approaches for dust settling are considered and compared. The influences of disk substructures, such as rings and crescents, on the mass derivation are investigated as well. The results indicate that the traditional analytic method can underestimate the mass by a factor of a few to hundreds, depending on the optical depth along the line of sight set mainly by the true dust mass, disk size and inclination. As an application, we perform a detailed radiative transfer modeling of the spectral energy distribution of DoAr 33, one of the observed DSHARP disks. When the DSHARP dust opacities are adopted, the most probable dust mass returned from the Bayesian analysis is roughly 7 times higher than the value given by the analytic calculation. Our study demonstrates that estimating disk dust masses from radiative transfer modeling is one solution for alleviating the problem of insufficient mass for planet formation raised in the ALMA era.

  • On the underestimation of dust mass in protoplanetary disks: Effects of disk structure and dust properties

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The total amount of dust grains in protoplanetary disks is one of the key properties that characterize the potential for planet formation. With (sub-)millimeter flux measurements, literature studies usually derive the dust mass using an analytic form under the assumption of optically thin emission, which may lead to substantial underestimation. In this work, we conduct a parameter study with the goal of investigating the effects of disk structure and dust properties on the underestimation through self-consistent radiative transfer models. Different dust models, scattering modes and approaches for dust settling are considered and compared. The influences of disk substructures, such as rings and crescents, on the mass derivation are investigated as well. The results indicate that the traditional analytic method can underestimate the mass by a factor of a few to hundreds, depending on the optical depth along the line of sight set mainly by the true dust mass, disk size and inclination. As an application, we perform a detailed radiative transfer modeling of the spectral energy distribution of DoAr 33, one of the observed DSHARP disks. When the DSHARP dust opacities are adopted, the most probable dust mass returned from the Bayesian analysis is roughly 7 times higher than the value given by the analytic calculation. Our study demonstrates that estimating disk dust masses from radiative transfer modeling is one solution for alleviating the problem of insufficient mass for planet formation raised in the ALMA era.

  • The Architecture of the V892 Tau System: the Binary and its Circumbinary Disk

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present high resolution millimeter continuum and CO line observations for the circumbinary disk around V892 Tau to constrain the stellar and disk properties. The total mass of the two near-equal-mass A stars is estimated to be $6.0\pm0.2\,M_{\odot}$ based on our models of the Keplerian-dominated gas disk rotation. The detection of strong ionized gas emission associated with the two stars at 8 mm, when combined with previous astrometric measurements in the near-infrared, provides an updated view of the binary orbit with $a=7.1\pm0.1$ au, $e=0.27\pm0.1$, and $P=7.7\pm0.2$ yr, which is about half of a previously reported orbital period. The binary orbital plane is proposed to be near coplanar to the circumbinary disk plane (with a mutual inclination of only $\Delta=8\pm4.2$ deg; another solution with $\Delta=113$ deg is less likely given the short re-alignment timescale). An asymmetric dust disk ring peaking at a radius of 0.''2 is detected at 1.3 mm and its fainter counterparts are also detected at the longer 8 and 9.8 mm. The CO gas disk, though dominated by Keplerian rotation, presents a mild inner and outer disk misalignment, such that the inner disk to the SW and outer disk to the NE appear brighter than their counterparts at the opposite disk sides. The radial extension of the disk, its asymmetric dust ring, and the presence of a disk warp could all be explained by the interaction between the eccentric binary and the circumbinary disk, which we assume were formed with non-zero mutual inclination. Some tentatively detected gas spirals in the outer disk are likely produced by interactions with the low mass tertiary component located 4'' to the northeast. Our analyses demonstrate the promising usage of V892 Tau as an excellent benchmark system to study the details of binary--disk interactions.