Orbital Eccentricity of Celestial Motion---from Stars to Planets
摘要: 偏心率是描述天体运动轨道的重要参数之一, 能够为揭示天体的动力学演化提供重要线索, 进而帮助理解天体形成与演化的过程及背后的物理机制. 随着天文观测技术的不断发展, 人们对于天体运动轨道的研究已经走出太阳系, 包含的系统也从大质量端的恒星系统延伸到了低质量端的行星系统. 聚焦天体轨道偏心率研究, 回顾了目前在恒星系统(包括主序恒星、褐矮星以及致密星)和行星系统(包括太阳系外巨行星以及``超级地球''、``亚海王星''等小质量系外行星)方面取得的进展, 总结了不同尺度结构下偏心率研究的一些共同之处和待解决的问题. 并结合当下和未来的相关天文观测设备和项目, 对未来天体轨道偏心率方面的研究工作进行了展望.
Abstract: The orbital eccentricity is one of the key parameters to describe the orbit of celestial bodies, which can provide important clues to reveal their dynamical evolution, and thus help to understand their formation and evolution processes along with the physical mechanisms behind them. The continuous improvement of observational technologies enables us to explore the orbit of celestial bodies beyond the Solar System, i.e., from stellar systems to planetary systems. Focusing on the orbital eccentricity of celestial bodies, this paper reviews the progress in stellar systems (including the main sequence stars, brown dwarfs, and compact stars) and planetary systems (including gas-giants, low-mass exoplanets such as ``super-Earth'' and ``sub-Neptune''), and summarizes several similarities and issues among the investigations of orbital eccentricity under different scales. Finally, based on the ongoing and future astronomical facilities and missions, we discuss the future prospect on eccentricity studies of stellar systems, extrasolar planetary systems and even extrasolar satellite systems.
[V1] | 2023-08-02 10:59:04 | ChinaXiv:202308.00102V1 | 下载全文 |
1. 早型旋涡星系M81 (NGC 3031)的形态学解构研究 | 2023-09-06 |
2. 黑洞双星的B型QPO频率与幂律通量的相关性的解释 | 2023-08-02 |
3. 北斗三号卫星精密定轨中的光压模型研究 | 2023-08-02 |
4. 基于CSST多色测光的时序测光精度分析 | 2023-08-02 |
5. 基于智能优化算法的小天体初轨确定 | 2023-08-02 |
6. 超导SIS混频器空间应用发射锁定机构热胀特性测量研究 | 2023-08-02 |
7. 空间碎片轨道预报中动力学模型基准的选取 | 2023-08-02 |
8. 基于100 nm砷化镓pHEMT工艺的C波段宽带低噪声放大器芯片 | 2023-08-02 |
9. NGC 3603星团中的大质量逃逸双星 | 2023-08-02 |
10. 带电测试粒子在磁化史瓦西黑洞中的混沌运动 | 2023-08-02 |